人工知能(AI)・機械学習のサービス・コンサルティングならブレインパッド

TOP > 導入事例・実績 > 化学プラントにおけるコスト最適化のための蒸気量需要予測

Case study

人工知能(AI)の導入事例・実績

化学プラントにおけるコスト最適化のための蒸気量需要予測

三井化学株式会社様

最適化されたプラントの運転手法を事前に決定するシステム開発のために、化学プラントにおける近未来の蒸気需要量の変動を予測するモデルを構築。予測モデルには機械学習を採用し、工場の省エネルギー化と生産効率の最適化に貢献しました。

Solution

このようなソリューションを実現しました

従来のシステムでは、プラント内の必要蒸気量、電力の自家発電量、燃料コストをリアルタイムで監視してプラント運転のための最適解を管理者に提示するまででしたが、消費燃料を最適化して省エネルギー化を実現するためには、電力や蒸気量の近未来の変動を予測することが必要となっていました。本プロジェクトでは、三井化学の中核工場である大阪工場において、稼働・非稼働データと蒸気の使用実績データの関係を分析・学習することにより、近未来の蒸気の需要量を予測するモデルを構築しました。

課題

三井化学では従来、プラント内の必要蒸気量、電力の自家発電量、燃料コストをリアルタイムで監視するシステムを開発し、最適なプラントの運転手法を提示するシステムを運用していましたが、近未来に起こる蒸気・電力量の変動を予測する仕組みを構築し、消費燃料を最適化した運転手法を事前に決定できるようにすることが課題となっていました。

導入後の成果

本プロジェクトでは、近未来の蒸気の需要量を予測するモデルを構築しました。三井化学はこのモデルを活用することで、以下の効果を狙います。
・工場内で発生する蒸気ロスや過剰な燃料消費を抑制して省エネルギー化
・燃料、電力、給水等にかかるコストを最適化

まずは、お客様のお悩みや検討中の構想を
お聞かせください。
経験豊富なスペシャリストが
適切なアドバイスをさせて頂きます。

お電話でのお問い合わせ

03-6721-7002

Search

事例を検索する